NAME

Elkins Coal and Coke Company Historic District

AND/OR COMMON

Mercury Coal and Coke Company

LOCATION

STREET & NUMBER

ca. 1/2 mi. s.w. of Masontown & 1/4 mi. w., NOT FOR PUBLICATION

CITY, TOWN

of W. Va. 7

COUNCIL DISTRICT

Bretz

STATE

West Virginia

CLASSIFICATION

CATEGORY OWNERSHIP STATUS

X DISTRICT _PUBLIC

_PRIVATE

_STRUCTURE

_PUBLIC ACQUISITION

_IN PROCESS

_SITE

_OBJECT

_ACCESSIBLE

WORK IN PROGRESS

YES. RESTRICTED

UNOCCUPIED

YES UNRESTRICTED

UNOCCUPIED

BUILDING(S)

PRIVATE

_BOTH

UNOCCUPIED

Site

UNOCCUPIED

STRUCTURE

_(PRIVATE

SITE

_IN PROCESS

_CUSTOM

COORDINATING_ STRUCTURE

_ACCESSIBLE

PUBLIC ACQUISITION

UNOCCUPIED

UNOCCUPIED

_ACCESSIBLE

 site

PRESENT USE

AGRICULTURE _MUSEUM

COMMERCIAL _PARK

EDUCATIONAL _PRIVATE RESIDENCE

ENTERTAINMENT _RELIGIOUS

GOVERNMENT _SCIENTIFIC

INDUSTRIAL _TRANSPORTATION

MILITARY _OTHER

OWNER OF PROPERTY

NAME

Mercury Coal and Coke Company (Wayne H. Fortney, President)

STREET & NUMBER

P.O. Box 859

CITY, TOWN

Morgantown

STATE

West Virginia

LOCATION OF LEGAL DESCRIPTION

COURTHOUSE

Office of the County Clerk

REGISTRY OF DEEDS, ETC.

STREET & NUMBER

Preston County Courthouse

CITY, TOWN

Kimberly

STATE

West Virginia

REPRESENTATION IN EXISTING SURVEYS

TITLE

Historic American Engineering Record

DATE

1975

X FEDERAL STATE COUNTY LOCAL

DEPOSITORY FOR SURVEY RECORDS

Historic American Engineering Record

CITY, TOWN

Washington

STATE

D.C.
DESCRIPTION

CONDITION

<table>
<thead>
<tr>
<th>EXCELLENT</th>
<th>DETERIORATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOOD</td>
<td>RUINS</td>
</tr>
<tr>
<td>FAIR</td>
<td>UNEXPOSED</td>
</tr>
</tbody>
</table>

CHECK ONE

<table>
<thead>
<tr>
<th>ORIGINAL SITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGINAL SITE</td>
</tr>
</tbody>
</table>

CHECK ONE

<table>
<thead>
<tr>
<th>ALTERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOVED</td>
</tr>
</tbody>
</table>

DATE

DESCRIBE THE PRESENT AND ORIGINAL (IF KNOWN) PHYSICAL APPEARANCE

The Elkins Coal and Coke Company Historic District encompasses 36.005 acres and consists of 140 beehive coke ovens; two pieces of vintage coking equipment; a small office building; the edifice that formerly housed the plant's steam generators; a shop building; and several lesser structures of uncertain vintage. Most of these structures and sites date back to the complex's heyday between 1906 and 1919, and all are still utilized in coking activities at the site.

The processes utilized in coking at Bretz today were evolved long before the Elkins Coal and Coke Company began erecting this facility in 1906. They were developed for the most part in England. For several years after Abraham Darby had established the feasibility of coke, it was produced by burning coal in open air mounds much like those used to convert wood to charcoal. Because this method proved wasteful, some enterprising cokemakers began to construct rectangular stone enclosures with open tops and apertures at the sides for air. Around 1763 British cokemakers began capping these ovens with dome tops shaped somewhat like beehives, thus giving them their name. Beehive ovens usually were constructed adjacent to coal mines; were built into hillsides in single rows or else constructed in double rows; were fed by special cars mounted on tracks above them; and were located close to major rail lines. In planning its layout at Bretz the Elkins firm followed these standard practices virtually to the letter.

I. Beehive Coke Ovens. These 140 ovens are the last survivors of some 400 Elkins Coal and Coke ovens erected here early in the 20th century. They are built into the hillside directly below the dirt road leading into the complex, face southwestward toward the tracks of the B & O Railroad, and are divided into two batteries arranged in continuous single rows. They rest on raised earth platforms or wharfs. Their retaining walls are constructed entirely of hand-cut stone except at their round-arched door openings where the intense heat and the need to quench the coke with water requires fire brick. The ovens, which have a diameter of approximately 12 feet and are 7 feet high, are constructed entirely of fire brick set in clay mortar. The dome shape of the top serves not only to make the structure more rigid but focuses heat more directly on the burning coal.

(continued)
The ovens are charged from the top by electric-powered hopper cars, known variously as "larry cars" or "lorries," which run along small tracks directly above the charging holes. After being initially charged the ovens may be ignited with wood, oil, or coal, but if they are in continuous operation, they will be hot enough to ignite the coal spontaneously. The most critical phase in the entire process is regulating the air supplied to the oven. In this respect beehive coking is almost a handicraft industry because the human eye is the only real measuring device. Air supply is controlled by temporarily bricking the door opening with a combination of fire brick, mud, cement, and newspapers while leaving a small space at the top for air. The individual in charge closely observes the flames coming from the charging port and adjusts the air supply as necessary.

After the coal has been converted into coke, the fire bricks are removed from the doorway, and the coke is thoroughly soaked with water from a hose. By this time railroad cars have been brought up the rail spur running a few feet south of the ovens, and the coke loading machine put into place. Almost immediately the hot coke, constantly being sprayed with water to prevent ignition, is loaded, and the entire process started anew.

Because of the intense heat generated during the coking process, these ovens constantly require repair, and probably few if any of the original fire brick are still in use. At the time of the AASLH representative's visit, the ovens were just being put back into operation after a hiatus caused by the recent coal strike and wintertime damage to the ovens. Currently the ovens are being utilized for the production of sized, high-carbon, low-sulfur foundry and chemical coke. The present owner intends to keep the ovens in good repair and operate them as long as they are profitable. The ovens are unique in that they have been in operation over 70 years and are probably the Nation's last operating beehives.

II. Vintage Coking Equipment.

Hopper Car. This vehicle, used to charge the ovens and known variously as "larry car" or "lorry," was installed here by Elkins Coal and Coke in 1913. Constructed of steel and somewhat (continued)
resembling the bed of a dump truck, the device runs on tracks atop the ovens, is powered by a d.c. electric motor, and operates on much the same principle as a trolley car. Although it has been rebuilt on numerous occasions, its original motor is still intact.

Coke Loader. This device, utilized to remove coke from the ovens and load it into railroad cars, was built in Covington, Va., and also brought here by Elkins in 1913. Its most noticeable feature is a long shaft with linear gear teeth along its length. It is powered by a d.c. electric motor. The shaft's head, which looks much like a hoe, rakes coke out of the ovens onto a conveyor running parallel to them. This conveyor transports the coke to a second conveyor which is perpendicular to the first and which lifts the coke above the rail cars and moves it through a system of screens before discharging it below. Despite its age, the loader appears to be in good condition.

III. Office Building. This westward-facing, one story edifice is situated on the hill above the coke ovens and only a few feet east of the old Steam Generator Building. The structure consists of a rectangular-shaped main block constructed of red brick and a cinder-block wing connected to its east end. The brick portion probably dates back to 1906 if not earlier, while the cinder-block addition appears to be of more recent vintage. Windows are of the multipaned wood sash variety and are set in rectangular surrounds. Windows in the older portion originally were set in arched surrounds, but in recent years these have been blocked up. The building is capped with an asbestos-shingle-covered gable roof, and the corbeling along the main block's roofline is still visible.

Inside, the structure contains the offices of Mercury Coal and Coke Company. A few years ago the interior was gutted by fire, and the owner completely remodeled it, thus obliterating any original interior features. The edifice's overall condition appears to be good, and it is well-maintained.

(continued)
IV. Steam Generator Building. This 1 1/2-story, barnlike, red brick edifice is located a few feet west of the Office. Constructed around 1906, it originally housed the steam generators which furnished the power for the coking complex until late 1919. Its exterior walls are plain except for the brick pilasters on its north and south sides. Windows are generally of the multipaned wood sash variety and are set in arched surrounds. The structure is capped with a low-pitched, asbestos-shingle-covered gable roof. All of the original equipment has been removed, and the structure is presently used for storage. Its overall condition is good.

V. Shop Building. This long one-story edifice, located east of the Office and the Steam Generator Building, houses the equipment that Mercury Coal and Coke utilizes to repair and maintain the ovens and equipment. Probably erected before World War I, the Shop is constructed of red brick and capped with a low-pitched asbestos-shingle-covered gable roof which features skylights. Exterior ornamentation is minimal, and with the exception of the south end, the multipaned steel sash windows which once graced it have been removed and their rectangular surrounds filled with cinder blocks. The structure's overall condition appears to be good.

VI. Other Structures. Included within the boundary of the historic district are several edifices and objects of more recent vintage. They do not contribute to the district's national significance, but neither do they significantly detract from its early 20th century appearance. Included in this category is the steel tipple which feeds coal into the hopper car; the metal-clad buildings housing the machinery used to clean and prepare the coal before it goes to the tipple; and several storage sheds scattered over the premises.

Boundary Justification. The boundary described below coincides with Mercury Coal and Coke's legal property boundary and contains 36.005 acres. Except for the "other structures" noted above, the described boundary includes only historically significant structures and objects.

(continued)
Boundary Description. As indicated in red on the accompanying maps [(1) U.S.G.S. 7.5' Series, W. Va., Masontown Quad., 1960, photorevised 1976; (2) AASLH Sketch Map, 1978], and quoted from the deeds to the property, which consists of three adjacent tracts:

Tract 1: Beginning at a stake, S. 57° 54' W. 188.67 feet to a stake; thence N. 20° 15' W. 117.81 feet to a stake; thence N. 2° 57' W. 312.70 feet to a stake; thence N. 79° 48' W. 167 feet to a point in Deckers Creek; thence along said Deckers Creek, S. 8° 18' E. 112 feet to a point in said creek; thence S. 62° 29' W. 80 feet to a stake near Baltimore and Ohio Railroad right of way; thence S. 3° 10' E. 430 feet to a point along Deckers Creek; thence along said creek, S. 66° 2' E. 270 feet; thence S. 21° 45' W. 258 feet; thence S. 30° 36' E. 174.17 feet to a point in said creek; thence S. 66° 47' W. 193.15 feet to a stake; thence N. 84° 28' W. 93.25 feet to a stake; thence N. 47° 29' W. 194.98 feet to the place of beginning, containing 9.108 acres, more or less.

Tract 2: Beginning at the southeast corner of the Ruane tract of 9.108 acres; thence 8° 50' E. 98 feet to a point; thence N. 66° 47' W. 168 feet to a point; thence S. 23° 13' W. 96 feet to said Ruane tract; thence S. 66° 47' E. 193.15 feet to the place of beginning, containing 0.407 acres, more or less.

[Tract 3:] Beginning at a stake S. 69° 17' E. 1003.50 feet to a stake; thence S. 18° 00' W. 326.00 feet to a stake; thence S. 34° 07' E. 809.00 feet to a stake; thence S. 72° 15' E. 176.00 feet to a stake; thence S. 88° 53' E. 373.00 feet to a stake; thence S. 35° 20' E. 263.00 feet to a stake; thence N. 82° 46' W. 214.50 feet to a stake; thence S. 89° 25' W. 211.00 feet to a stake; thence S. 86° 24' W. 1062.50 feet to a stake; thence in a northerly direction with and along the right-of-way of the Baltimore and Ohio Railroad approximately 748.00 feet to a point in Deckers Creek, thence leaving said creek S. 57° 59' W. 549.00 feet to a stake; thence S. 29° 05' W. 248.52 feet to a stake; thence S. 66° 47' E. 193.15 feet to a stake; thence S. 84° 28' E. 117.81 feet to a stake; thence S. 2° 57' E. 312.70 feet to the place of beginning, containing 26.59 acres, more or less.

(continued)
*The boundary description quoted above is taken directly from deeds recorded in the Preston County Courthouse in Kingwood, W. Va., describing the property of the Mercury Coal and Coke Company. Because this particular property has not been mapped, the U.S.G.S. and sketch maps indicate only approximate boundaries.
SIGNIFICANCE

PERIOD AREAS OF SIGNIFICANCE -- CHECK AND JUSTIFY BELOW

PREHISTORIC ARCHAEOLOGY-PREHISTORIC COMMUNITY PLANNING LANDSCAPE ARCHITECTURE RELIGION
1400-1499 ARCHAEOLOGY-HISTORIC CONSERVATION LAW SCIENCE
1500-1599 AGRICULTURE ECONOMICS LITERATURE SCULPTURE
1600-1699 ARCHITECTURE EDUCATION MILITARY SOCIAL/HUMANITARIAN
1700-1799 ART ENGINEERING MUSIC THEATER
1800-1899 COMMERCE EXPLORATION/SETTLEMENT PHILOSOPHY TRANSPORTATION
1900- COMMUNICATIONS INDUSTRY POLITICS/GOVERNMENT OTHER (SPECIFY)

SPECIFIC DATES 1906-present

STATEMENT OF SIGNIFICANCE

According to pioneer industrial historian Victor S. Clark, "the expansion which . . . made the United States the largest producer of iron and steel in the world" in the late 19th and early 20th centuries should be attributed to the widespread adoption of blast furnace coke produced by coking operations like that of the Elkins Coal and Coke Company at Breitz, W. Va. Although coke had been used in England since the mid-18th century, it did not come into use in the United States until the 1830's because of the abundant supply of wood for making charcoal. Even then coke did not gain widespread use until after the Civil War because of the preference for anthracite fuel and the poor coking qualities of most available soft coals. By the mid-1860's, however, the increased demand for railroad iron, the widespread adoption of the Bessemer process for making steel, and the availability of low-priced, high-quality coking coal all combined, says economic historian Peter Temin, to cause coke "to be used as a blast-furnace fuel with rapidly increasing volume."

For many years most of the coke utilized in American blast furnaces was produced in beehive ovens like those operating today at the old Elkins Coal and Coke Company facility in Breitz, W. Va. In fact, according to steel industry expert Douglas A. Fisher, "from 1871 to 1919 . . . about 88 per cent of all iron produced in the United States was made with beehive coke as a fuel." In the post-World War I era, however, the beehives rapidly lost ground to by-product ovens which could recover gas and other valuable compounds. As a result, most beehive operations like the Elkins Plant were either shut down permanently or operated only during periods of peak steel production.

(continued)

The old Elkins Coal and Coke facility, now owned by Mercury Coal and Coke, is believed to be the Nation's last operating beehive coking works. It still produces coke by methods similar to those utilized at the turn of the century.

The Elkins Company historic district encompasses 36.005 acres and consists of 140 beehive coke ovens; several pieces of equipment related to the coking process; a small brick office building; a 1 1/2-story edifice that originally housed the plant's steam generators; a one-story shop building; and several lesser edifices of uncertain vintage. Most of these structures and objects date back to the complex's heyday between 1906 and 1919, and all are still utilized in coking activities at the site.

History

"Coke," says historian Muriel E. Sheppard, "is coal from which the volatile matter—the tar, oils, and gas—has been burned out, leaving mainly fixed carbon," and the "coke-making process is designed to drive off the volatile matter from the coal without letting combustion go far enough to burn the carbon."4 The origins of this process predate by many years the establishment of the Elkins Coal and Coke Company at Bretz early in the 20th century. Since the dawning of the iron age, man has needed sources of nearly pure carbon which, when properly heated, would take the oxygen out of iron ore and convert it into metal. For centuries charcoal served this purpose well, but by the early years of the 18th century, a shortage of wood for charcoal making in most industrial countries had inspired a search for a suitable substitute.

Abraham Darby, an English ironmaster, is generally credited with being the first man to produce coke successfully sometime around 1711. By the 1750's coke had won widespread acceptance.

in England, and by the end of the century it had almost entirely replaced charcoal. Although coke-making technology became widely known and adopted in much of Europe around this same time, Americans largely ignored it because of the large stands of timber available for conversion into charcoal. By the 1820's and 1830's, however, the East, the principal seat of the American iron industry, encountered a severe wood shortage which forced manufacturers to experiment with anthracite coal and coke as substitutes.

In 1837 small quantities of coke-smelted iron were successfully produced at both the Oliphant furnace near Uniontown, Pa., and the Lonaconing furnace in Frostburg, Md. Despite this breakthrough, anthracite, considered by many to be a natural coke, won acceptance as the principal furnace fuel because its deposits were concentrated in eastern Pennsylvania and were therefore readily available, while most accessible soft coal for coking was of poor quality. As a result, anthracite rapidly displaced charcoal as the principal iron furnace fuel in the 1840's and 1850's, and coke came in a poor third to these two fuels. By 1860 approximately 57 percent of the Nation's pig iron was made with anthracite; 30 percent with charcoal; and only 13 percent with coke.

During the Civil War years the percentage of coke-produced iron steadily increased until by 1865 it totaled 20 percent. At this juncture, the increased demand for railroad iron, the widespread adoption of the Bessemer process for steelmaking, and the availability of low-priced, high quality coking coal like that found around Connellsville, Pa., combined to cause coke, according to Temin, "to be used as a blast-furnace fuel with rapidly increasing volume." By 1869 coke furnaces had surpassed charcoal ones in their output of pig iron and had begun to close the gap on the anthracite furnaces as well. "In the next decade, coke became the king of the blast furnace fuels," says Fisher, "and in 1883 the production of 2,689,650 tons of coke pig iron for the first time exceeded the combined yield of 571,726 tons of charcoal iron and 1,885,596 tons of anthracite iron." (continued)

5 Temin, Iron and Steel in Nineteenth-Century America, 77.
In the late 19th and early 20th centuries, the widespread adoption of cheap and plentiful coke made possible the expansion of the Nation's iron and steel industry into the world's largest. To feed the country's hungry blast furnaces numerous coke plants, like the one operating today at Bretz, were established wherever a suitable supply of high quality coal lay near a railroad line that could transport the product to market. The Bretz facility owes its origins largely to the entrepreneurial activities of Stephen B. Elkins, who had begun to acquire large coal tracts in the area in the 1890's and who in 1902 purchased the uncompleted Morgantown & Kingwood Railroad to fully exploit them. In 1906 his Elkins Coal and Coke Company acquired the town of Bretz and an adjacent coal mine from the West Virginia Coal Company and began to construct a bank of 400 coke ovens.

Elkins' Bretz plant went into full production in 1907, shortly after the Morgantown & Kingwood Railroad was completed to a point on the B & O. This new route gave the Elkins Coal and Coke Company an eastward connection to its chief customer, the huge steel plant and shipyard of the Maryland Steel Company at Sparrows' Point, and between 1907 and 1918 huge quantities of coke were shipped from Bretz to this facility. In 1914 Charles M. Schwab's Bethlehem Steel Corporation purchased the Sparrows' Point Complex and 4 years later acquired the Elkins properties as well.

Like most of the coking plants constructed in 19th- and-early-20th-century America, the Elkins operation at Bretz utilized the beehive oven to produce coke. In fact, according to Fisher, "from 1871 to 1919 . . . about 88 per cent of all iron produced in the United States was made with beehive coke as a fuel."/7 After World War I, however, the beehives were quickly displaced by more efficient by-product ovens which could recover gas and other valuable chemicals. Early in 1920 Bethlehem Steel shut down the Bretz ovens and moved its coking operations to a modern by-product facility in Baltimore.

(continued)

7Ibid., 110.
After Bethlehem left Bretz, the property passed through a number of hands over the years, and the coke ovens operated only intermittently, mostly during periods of peak steel production. By the end of 1920 Joseph Miller had purchased the town, mine, and coking plant. He retained them until 1927 when he sold them to the Gibraltar Fuel Company which closed the mine in 1929. Little is known about operations at Bretz from then until 1953 when the Mercury Coal and Coke Company purchased the property at a county bankruptcy sale. At that time, new coal handling equipment was installed, the ovens refurbished, and the facility put back into operation. Since that date the Bretz coking plant has been operated on a nearly full-time basis.
MAJOR BIBLIOGRAPHICAL REFERENCES

(See continuation sheet.)

GEOGRAPHICAL DATA

ACREAGE OF NOMINATED PROPERTY 36,005 (See UTM Worksheet.)

UTM REFERENCES

ZONE EASTING NORTHING ZONE EASTING NORTHING

VERBAL BOUNDARY DESCRIPTION

(See last page of description.) (ESPECIALLY SEE FOOTNOTE.)

LIST ALL STATES AND COUNTIES FOR PROPERTIES OVERLAPPING STATE OR COUNTY BOUNDARIES

<table>
<thead>
<tr>
<th>STATE</th>
<th>CODE</th>
<th>COUNTY</th>
<th>CODE</th>
</tr>
</thead>
</table>

FORM PREPARED BY

NAME/TITLE

Ralph J. Christian, Historian, Historic Landmarks Project

ORGANIZATION

American Association for State and Local History

DATE

October 1978

STREET & NUMBER

1400 Eighth Avenue South

TELEPHONE

615/242-5583

CITY OR TOWN

Nashville

STATE

Tennessee

STATE HISTORIC PRESERVATION OFFICER CERTIFICATION

THE EVALUATED SIGNIFICANCE OF THIS PROPERTY WITHIN THE STATE IS:

NATIONAL ___ STATE ___ LOCAL ___

As the designated State Historic Preservation Officer for the National Historic Preservation Act of 1966 (Public Law 89-665), I hereby nominate this property for inclusion in the National Register and certify that it has been evaluated according to the criteria and procedures set forth by the National Park Service.

STATE HISTORIC PRESERVATION OFFICER SIGNATURE

TITLE

DATE

FOR NPS USE ONLY

I HEREBY CERTIFY THAT THIS PROPERTY IS INCLUDED IN THE NATIONAL REGISTER

DIRECTOR, OFFICE OF ARCHEOLOGY AND HISTORIC PRESERVATION

ATTEST:

KEEPER OF THE NATIONAL REGISTER

DATE

Elkins Coal and Coke Company
Historic District
Ca. ½ mi. s.w. of Masontown and
¼ mi. w. of W. Va. 7
Bretz, West Virginia

AASLH Sketch Map
by: J. B. Gardner
1978
○ ➔ Photo Angles
Elkins Coal and Coke Company
Historic District
ca. 1/2 mi. s.w. of Masontown and
1/4 mi. w. of W. Va. 7
Brezit, West Virginia

U.S.G.S. 7.5' Series
W. Va.; Masontown Quad.
1960; Photorevised 1976
Zone 17
A: 602,370/4,377,930
B: 602,400/4,377,750
C: 602,650/4,377,640
D: 602,620/4,377,480
E: 602,080/4,377,560
F: 601,870/4,377,840
G: 601,940/4,378,030
H: 602,100/4,377,920
I: 602,140/4,377,990
UTM Worksheet

Elk's Coal and Coke Company
Historic District

<table>
<thead>
<tr>
<th></th>
<th>Z</th>
<th>E</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.7</td>
<td>602.370</td>
<td>437.790</td>
</tr>
<tr>
<td>B</td>
<td>1.7</td>
<td>602.400</td>
<td>437.770</td>
</tr>
<tr>
<td>C</td>
<td>1.7</td>
<td>602.650</td>
<td>437.760</td>
</tr>
<tr>
<td>D</td>
<td>1.7</td>
<td>602.620</td>
<td>437.740</td>
</tr>
<tr>
<td>E</td>
<td>1.7</td>
<td>602.080</td>
<td>437.750</td>
</tr>
<tr>
<td>F</td>
<td>1.7</td>
<td>601.870</td>
<td>437.780</td>
</tr>
<tr>
<td>G</td>
<td>1.7</td>
<td>601.940</td>
<td>437.800</td>
</tr>
<tr>
<td>H</td>
<td>1.7</td>
<td>602.100</td>
<td>437.790</td>
</tr>
<tr>
<td>I</td>
<td>1.7</td>
<td>602.140</td>
<td>437.790</td>
</tr>
</tbody>
</table>

Draft 8.74